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Abstract

Objective: To honor Tom Waters’s work on emerging occupational health issues, we review the 

literature on physical along with chemical exposures and their impact on functional outcomes.

Background: Many occupations present the opportunity for exposure to multiple hazardous 

exposures, including both physical and chemical factors. However, little is known about how these 

different factors affect functional ability and injury. The goal of this review is to examine the 

relationships between these exposures, impairment of the neuromuscular and musculoskeletal 

systems, functional outcomes, and health problems with a focus on acute injury.

Method: Literature was identified using online databases, including PubMed, Ovid Medline, and 

Google Scholar. References from included articles were searched for additional relevant articles.

Results: This review documented the limited existing literature that discussed cognitive 

impairment and functional disorders via neurotoxicity for physical exposures (heat and repetitive 

loading) and chemical exposures (pesticides, volatile organic compounds [VOCs], and heavy 

metals).

Conclusion: This review supports that workers are exposed to physical and chemical exposures 

that are associated with negative health effects, including functional impairment and injury. 

Innovation in exposure assessment with respect to quantifying the joint exposure to these different 

exposures is especially needed for developing risk assessment models and, ultimately, preventive 

measures.

Application: Along with physical exposures, chemical exposures need to be considered, alone 

and in combination, in assessing functional ability and occupationally related injuries.
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INTRODUCTION

This review is dedicated to the memory and lifetime work of Tom Waters. We present an 

extension of what Tom Waters had envisioned in a 2004 conference about workplace risk 

factors experienced by children and adolescents working in agriculture (Waters & Wilkins, 

2004). Under Tom’s guidance during the conference, a panel of national experts discussed 

the prevention of workplace musculoskeletal disorders among these vulnerable workers. 

They identified research needs, including understanding how physical and chemical 

environmental exposures negatively affect the neuromuscular and skeletal systems and 

contribute to degenerative disorders. Tom and the panel specifically discussed the need to 

investigate the role of pesticides and other agricultural chemicals in modifying 

neuromuscular systems, muscle strength, and neuromotor functions (e.g. balance) and long-

term health effects. Two of the authors (AB and ES) of this article were positively influenced 

by the conference, which directly led to their research efforts.

Keeping in alignment with findings from the conference and Tom’s great vision, we discuss 

how environmental factors (e.g., pesticides, heavy metals, solvents, heat, repetitive loading) 

affect the neuromuscular and musculoskeletal systems, which collectively endangers 

functional outcomes (e.g., balance, gait while carrying out tasks). These functional outcomes 

result in potential injuries and increased risk of developing chronic neurodegenerative and 

degenerative musculoskeletal disorders later in life. In the long term, having such knowledge 

would hopefully elicit future collaborations among multidisciplinary experts who would 

further investigate the relative contributions of workplace physical and chemical exposures 

in influencing workers’ task performance and health status.

Background

Many jobs require working in environments with multiple risk factors of physical and 

chemical origins. Therefore, it is critical that the impact on worker health of these exposures, 

alone and combined, is better understood in order to stimulate innovative approaches toward 

ensuring worker health. Examples of physical risk factors consist of job/task characteristics 

(e.g., static standing versus dynamic tasks, body segment movement), high temperatures, 

poor environmental lighting, floor slipperiness, and inclined standing and walking surfaces 

(e.g., on ramp and roof surface). Examples of chemical risk factors include heavy metals 

(e.g., lead [Pb], manganese [Mn]), solvents, and pesticides, which are known neurotoxicants. 

Costa, Giordano, Guizzetti, and Vitalone (2008) define neurotoxicity as “any adverse effect 

on the central or peripheral nervous system caused by chemical, biological or physical 

agents” (p. 1241).

Previous studies provide evidence that both physical and chemical exposures affect the 

neuromuscular and musculoskeletal systems, thus modifying functional abilities. For 

example, the ability to maintain upright balance in a static posture and/or in dynamic 
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conditions (e.g., reaching, bending, walking with weight on an inclined surface) challenges 

the neuromuscular and musculoskeletal system and may increase the risk of falls (Bagchee 

& Bhattacharya, 1998; Kincl, Bhattacharya, Succop, & Bagchee, 2003). For example, 

roofers are exposed to physical risk factors and often have to maintain postural balance in/on 

challenging work surfaces (Bhattacharya, Succop, et al., 2007; Kincl et al., 2003). In 

addition, roofers and other construction workers are exposed to neurotoxic chemicals (e.g., 

epoxy resins, pitch for cement workers, coal tar pitch and solvents for roofers, and welding 

fumes and solvents for painters) in addition to these physical exposures (Bhattacharya, 

Succop, et al., 2007; Kincl et al., 2003). Hunting, Matanoski, Larson, and Wolford (1991) 

reported an association between solvent exposures and an increased risk of slips, trips, and 

falls (STFs). In addition, other neurotoxicants (e.g., Pb, Mn, jet fuel, and pesticides) have 

been reported to affect postural balance and increase the risk of falls (Bhattacharya, Shukla, 

Bornschein, Dietrich, & Kopke, 1988; Bhattacharya, Shukla, Dietrich, Bornschein, & 

Berger, 1995; Kincl, Dietrich, & Bhattacharya, 2006; Kuo, Bhattacharya, Succop, & Linz, 

1996; Rugless et al., 2014; Sack et al., 1993; Smith et al., 1997; Standridge, Bhattacharya, 

Succop, Cox, & Haynes, 2008).

Using an interdisciplinary approach, this review presents literature focused on cognitive 

impairment and neuromuscular and skeletal functional disorders associated with physical 

(heat and repetitive loading) and chemical (pesticides, volatile organic compounds [VOCs], 

and heavy metals) exposures. It hopefully will bring attention to the fact that there is a subset 

of workers who are exposed to both physical and chemical risk factors.

Conceptual Framework

To guide our review, we developed a conceptual model, displayed in Figure 1. This 

conceptual framework represents how physical and chemical exposures may affect worker 

health throughout the work life course, which is depicted from adolescence through 

adulthood. Adolescents are still developing both mentally and physically and may be at an 

increased risk of health problems due to environmental exposures compared with adults. For 

example, adolescents (a) have higher rates of respiration, (b) consume more food and fluids 

per body mass, and (c) have different rates of metabolism, which may increase chemical 

toxicity (Sly & Carpenter, 2012). For these reasons, it is estimated that environmental factors 

account for 34% of the global disease burden in children ages 0 to 14 (Pronczuk & Surdu, 

2008). Although, adolescence is often defined as a developmental period occurring 

approximately from the ages of 10 to 19, full brain development may not occur until age 25 

(McNeely & Blanchard, 2009). During adolescence, the brain undergoes a process of 

synaptic pruning that increases efficiency and myelination of axons, which affects how 

quickly information flows (Spear, 2007). Toxicant exposure during this time could affect not 

only function but also maturation, leading to both short- and long-term negative health 

consequences (Golub, 2000).

Chemical, physical, and psychosocial exposures may happen throughout the working life 

course along with intrinsic factors (e.g., genetics), affecting the worker’s ability to respond 

to these exposures (Figure 1). Psychosocial exposures, including aspects of work 

organization, with intrinsic factors are associated with occupational injury and other health 
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outcomes (Hoogendoorn, van Poppel, Bongers, Koes, & Bouter, 2000; Johannessen, 

Gravseth, & Sterud, 2015; Lesuffleur, Chastang, Sandret, & Niedhammer, 2015). This 

review focuses on the physical and chemical exposures that, both individually and in 

combination, could be detrimental to functional abilities, resulting in an increased risk of 

injury and/or chronic health issues. The functional abilities encompass neuromuscular 

outcomes (e.g., postural balance, gait, and cognitive abilities).

METHOD

In this review, we focus on the physical exposures—heat and repetitive loading of the 

musculoskeletal system—and the chemical exposures—Pb, pesticides, and VOCs, 

particularly solvents—and their potential contribution to cognitive impairment and 

functional disorders via neurotoxicity. We identified relevant literature published in the 

English language during the years 1980 to present. Searched databases were CINAHL 

Complete, Embase, Medline (Ovid), PubMed, Web of Science, SCOPUS, and Google 

Scholar. Search strategies included combinations of terms and phrases such as balance, 
postural sway, injury, neurological, neurotoxicity, motor control, musculoskeletal disorders, 
occupational, work, Pb, Mn, pesticides, solvents, neurodegeneration, farm, agriculture, farm 
worker, and farmer within the context of our five main exposure categories: heat, repetitive 

loading, heavy metals, pesticides, and VOCs. We identified additional articles by manually 

searching the reference lists of published articles.

RESULTS

Physical Exposures Associated With Functional Impairment, Injury, and Musculoskeletal 
Health

In this section we review the literature pertaining to the detrimental impact of heat stress on 

functional outcomes (i.e., postural balance and gait). Such impairment in functional 

outcomes can trigger fall- and/or near-fall-related acute injuries. In addition, we also review 

literature on occupational tasks, such as kneeling and squatting, that can lead to chronic joint 

pain and degenerative bone disorders due to repeated loading of musculoskeletal joints.

Heat stress and its impact on the neuromuscular system and task 
performance.—Millions of workers in the United States are at increased risk of STFs 

while performing various job tasks even in normothermic environments. The risk of STFs is 

further increased when task is performed in hot environments. Sources of heat stress are 

associated with environmental conditions (temperature, humidity) and physical exertion 

related to metabolic load. For many, such as firefighters and health care workers, these risks 

are enhanced due to heat stress associated with wearing encapsulated protective clothing. 

Physical exertion increases skeletal muscle contractions resulting in metabolic heat 

production much greater than the resting state (Bernard, 2012; Larranaga & Bernard, 2011). 

To maintain homeostasis of thermal equilibrium, the heat generated by the muscles (muscle 

contraction is about 20% efficient; therefore 80% of the energy appears as heat), 

environmental factors, and clothing must be dissipated so that the body’s heat storage is 

minimal (Bernard, 2012; Goldman, 1994). The most effective mode of heat dissipation in 

humans is by evaporative cooling. The evaporative potential of the environment is 
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determined by the partial vapor pressure gradient between the sweat on the skin and the 

surrounding air (Bernard, 2012). Heat strain is described by the physiological responses 

(e.g., body temperature, heart rate, cardiac output) to the heat stress. Compensable heat 

stress is defined as heat gained by the body equal to heat loss resulting in a steady-state core/

rectal temperature of 38°C. Conversely, uncompensable heat stress occurs when an 

individual’s evaporative cooling demand is not met by the environment’s evaporative 

cooling capacity (e.g., firefighters wearing encapsulated clothing; Mani et al., 2013).

Effect of hot environments on fatigue buildup and task performance.—
Literature supports that physical exertion in hot environments affects cardiorespiratory and 

locomotor systems and brain activities, resulting in central fatigue (Nybo, 2010; Nybo, 

Rasmussen, & Sawka, 2014). Multiple physiological mechanisms have been associated with 

central and peripheral fatigue triggered by heat storage at the brain and muscle levels. 

During physical exertion in heat, central fatigue is potentially affected by elevated heat 

storage in the brain, dopaminergic neurotransmitters, and nor-adrenaline inhibition (Nybo, 

2010, 2012; Nybo & Neilsen, 2001). Mechanistically, hyperthermia-induced fatigue during 

submaximal intensity exercise is associated with inhibitory signals from thermoreceptors 

due to increased core and skin temperature and increased feedback from the 

cardiopulmonary systems, resulting in detrimental impacts on the skeletal metabolism, 

potentially compromising muscle performance (Sawka, Leon, Montain, & Sonna, 2011). For 

example, lifting capacity in hot environments is compromised by 13% to 20%, depending on 

subjects’ heat acclimatization status (Hafez & Ayoub, 1991).

Effect of physical exertion with a full-face respirator in normothermic 
environments and its impact on postural balance.—Physical exertion conducted in 

normothermic environments generates increased metabolic heat that increases the risk of 

impairment of workers’ gross motor capacity, such as postural balance. Seliga et al. (1991) 

showed that physical exertion conducted with or without a respirator at room temperature 

significantly (p = .007) impaired the subjects’ postural balance (quantified as the total length 

of postural sway measured by a force platform system) as the workload increased from light 

(40 watts [W]) to medium (85 W) to heavy (125 W) (Figure 2). Sway area is defined as the 

total area encompassed by the stabilogram created by the x-y plot of body’s center of 

pressure (CP); an increase in sway area implies poorer balance (Figure 2). Sway length is the 

total length of the x-y plot of CP; a larger sway length implies reduced postural balance. 

(Figure 2). Increase in postural imbalance is attributable to workload-induced proprioceptive 

fatigue effects on the nervous system’s inability to adequately process the afferents and 

deploy appropriate efferent to the postural muscles. This study reported that postural sway 

was not correlated with heart rate and perceived exertion levels during task performance in 

normothermic environments. Therefore, measurement of heart rate and perceived exertion 

during physically demanding tasks do not predict threat to postural balance potentially 

resulting in a fall. The threat to the postural balance will be even greater when physical 

exertion is carried out in a hot environment along with other factors, such as firefighting 

with a full-face respirator.
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Effect of physical exertion with a full-face respirator in hot environments and 
its impact on postural balance.—Using a self-contained breathing apparatus (SCBA) 

in an encapsulated garment increases heat buildup, which affects gross motor function (e.g., 

postural stability) among workers, specifically firefighters (Hur, Park, Rosengren, Horn, & 

Hsiao-Wecksler, 2015; James, Mani, Kincer, & Bhattacharya, 2013; Mani et al., 2013). 

James et al. (2013) and Mani et al. (2013) studied 26 firefighters’ postural balance in a one-

legged stance for 30 s with eyes open (EO) and eyes closed (EC) before and after 

firefighting. After three rounds of firefighting, the sway area and length (defined earlier) 

were 107.6% and 29.2% higher, respectively, than baseline for the EO test. Shown in Figure 

3 is the effect of heat on postural balance for a sample of firefighters. Eight firefighters 

participated in the EC test. Only one completed the tests without falling (James et al., 2013). 

In the EO test with all afferents (vision, proprioception, and vestibular systems) intact, the 

firefighters had difficulty maintaining postural balance; however, with vision removed in the 

EC test, the remaining two afferents were not sufficient to prevent falls. These findings 

suggest that feedback from proprioceptors and vestibular systems are compromised in hot 

environments.

Task performance in hot environments elicits hypohydration, having a negative impact on 

the neuromuscular system. For example, Distefano et al. (2013) showed the detrimental 

impact of hypohydration, during task performance in heat, on subjects’ neuromuscular 

control as characterized by poorer postural stability. Fatigue and hypohydration were 

associated with increased variability of gait patterns, resulting in potential falls. 

Hypohydration during high-intensity exercise in hot environments could cause dilution of 

plasma sodium. Low plasma sodium, or hyponatremia, forces water to move from the 

extracellular compartment into the intracellular compartment, resulting in potential 

pulmonary congestion, brain swelling, and heat stroke. Under these conditions, degeneration 

of neurons in the cerebellum and cerebral cortex are associated with impaired central 

nervous system (CNS) functionality (Sawka et al., 2011; Nybo, 2007). Therefore, it is 

imperative that electrolyte balance is maintained while working in hot environments.

Effect of repeated/chronic exposure to physical exertion in hot environments.
—Firefighters and construction and agricultural workers are among those repeatedly 

exposed to hot environments. Chronic exposure may result in heat acclimation and potential 

gene–environment interactions. During recent years, significant advances have been made in 

understanding the role of gene–environment interactions involving physical exertion in hot 

environments and heat acclimation (Sawka et al., 2011). Exposure to hot environments 

and/or high-intensity aerobic exercise stimulates gene expression (in skeletal muscles and 

any cells that reside in the skeletal muscle capillary beds) known as heat shock proteins 

(HSP), which could trigger anti-inflammatory response to enhance tolerance to subsequent 

hyperthermia-induced cell damage (Sonna, Sawka, & Lilly, 2007). Repeated exposure to 

hyperthermia caused by physical exertion stimulates enhanced thermal tolerance due to 

increased expression of HSP basal levels and altered HSP expression patterns. This change 

in HSP levels could potentially improve functional abilities (such as postural balance and 

gait function) while working in hot environments (Connolly et al., 2004; Sonna et al., 2010). 

Recent studies also report cellular malfunctions and maladaptation associated with exposure 

Ross et al. Page 6

Hum Factors. Author manuscript; available in PMC 2019 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to acute high heat levels and cumulative heat exposures. Heat-associated cellular 

malfunctions are not completely understood but include a myriad of outcomes (e.g., protein 

denaturation, translational inhibition, ribosomal bio-genesis arrest, and cytoskeletal damage; 

Mizzen & Welch, 1988; Sonna et al., 2004; Welch & Mizzen, 1988).

Repetitive physical loading of joints and its detrimental impact on 
musculoskeletal health.—Previous studies provide strong evidence in adult populations 

for an association between chronic exposure to heavy lifting (10 to 20 kg weight for up to 20 

years) and hip osteoarthritis (OA; Andersen, Thygesen, Davidsen, & Helweg-Larsen, 2012; 

Jensen, 2008). The risk of hip OA in farmers doubled after 10 years of work involving 

lifting. In addition, sustained static kneeling positions commonly found in agriculture and 

construction tasks impair knee joint stability, resulting in detrimental loading of the 

subchondral bone, affecting the integrity of the cartilage (Kajaks & Costigan, 2015). Studies 

have reported osteoarthritic/arthritic and other types of musculoskeletal conditions in carpet 

layers, ballet dancers, housemaids, miners, and construction workers (Bhattacharya, Habes, 

& Dewees, 2007; Bhattacharya, Mueller, & Putz-Anderson, 1985). Data indicate that carpet 

installers experience more than 10 times the lower-extremity disorders expected, possibly 

because their knee joint is overtraumatized due to combination of kneeling and use of knee 

kicker that delivers, on average, an impact force of 3,000 newtons (N) at a repetition rate of 

140 kicks per hour (Bhattacharya et al., 1985; Bhattacharya, Ramakrishanan, & Habes, 

1986). Since adult workers’ knee joints are mature, their response to work-related excessive 

knee/hip loading is much less traumatic than in adolescent agriculture workers, whose 

skeleton is still developing. Therefore, adolescent workers with excessive loading of their 

joints due to cumulative repetitive kneeling, squatting, and heavy lifting will be predisposed 

to the development of musculoskeletal disorders, for example, OA (Bhattacharya, Watts, et 

al., 2007).

Mechanistic studies by several investigators have identified that stiffening of subchondral 

bone is a precursor to cartilage damage, eventually resulting in OA (Brandt, Radin, Dieppe, 

& van de Putte, 2006). Although stiffening of subchondral bone appears to be a preclinical 

marker of OA, it cannot be detected in traditional X-rays. It is a challenge to identify 

individuals at risk of developing OA at a preclinical stage. Studies have reported the early 

development of decreasing damping capacity (associated with stiffening of subchondral 

bone) of the musculoskeletal system in adolescent workers involved in farming activities, 

including repetitive kneeling, squatting, and heavy lifting, in tasks such as feeding and 

watering livestock, shoveling grain or silage, using a pitchfork, and scraping manure 

(Bhattacharya, Watts et al., 2007; Marlenga, Pickett, & Berg, 2001). The damping capacity 

of their musculoskeletal system was noninvasively assessed with a bone shock absorption 

(BSA) method (Bhattacharya, Watts, et al., 2007; Bhattacharya et al., 2016). The results 

showed that youth who repeatedly performed farm-related physically demanding tasks had 

decreased bone-damping properties. This condition could trigger OA later in life by further 

exposing the cartilage to increased loading and the release of biochemicals (e.g., cytokines 

and enzymes), thus damaging the matrix.
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Chemical Exposure Associated With Functional Impairment and Injury

Several studies have reported that the long-term health effects of exposure to certain 

neurotoxicants in the workplace predispose workers to the development of Parkinsonism, 

osteoporosis, OA, mild cognitive impairment, and Alzheimer’s disease (Holz et al., 2012; 

Potula & Kaye, 2006; Potula, Kleinbaum, & Kaye, 2006; van Wijngaarden, Campell, & 

Cory-Slechta, 2009; Weisskopf et al., 2010; Weisskopf & Myers, 2006). Evidence also 

supports that they negatively affect motor control, including postural balance and gait 

function (Atchison, 1988; Goldstein, 1990; Kamel et al., 2007; Kamel & Hoppin, 2004; 

Sack et al. 1993). In the following section, we focus on the neurotoxic effects of chemical 

exposures, specifically pesticides, VOCs, and metals, and their ability to modify functional 

outcomes (e.g., postural balance) and increase susceptibility to acute injury. More 

information is presented on pesticides because fewer data on VOCs and metals exist.

Exposure to pesticide: Mechanisms of neurotoxicity and impact on functional 
outcome and injury.—Studies demonstrate that pesticides can impair the CNS and 

peripheral nervous system (PNS) via three ways: (a) by directly targeting the nervous 

system, (b) by disrupting cellular mechanisms affecting the nervous system, and (c) by 

interfering with chemical neurotransmission or ion channels (Costa et al., 2008; Igho & 

Afoke, 2014; Kimura et al., 2005; Yokoyama, 2007). Organophosphate (OP) and carbamate 

subgroups have the most documented neurotoxic mechanism for insecticides. Although the 

prevalence of OP use is declining, it remains one of the most widely used classes of 

insecticides, particularly in agriculture (Grube, Donaldson, Kiely, & Wu, 2011).

Both OPs and carbamates can inhibit the enzyme acetylcholinesterase (AChE). This enzyme 

breaks down the neurotransmitter acetylcholine (Ach). Without AChE, ACh accumulates in 

synaptic clefts, eventually resulting in overstimulation of the nervous system (Costa, 2012), 

which can potentially influence muscular contraction patterns, thereby detrimentally 

modifying postural balance and gait functions. Short- and long-term effects following high-

dose exposure can include sweating and salivation, profound bronchial secretion, 

bronchoconstriction, miosis, increased gastrointestinal motility, diarrhea, tremors, 

fasciculation, tingling in hands and feet, muscle weakness, neuropsychological deficits, and 

other CNS effects (Costa et al., 2008). Carbamates are believed to have lower toxicity and 

less long-term complications compared with OPs (Costa et al., 2008). Given the summary of 

neurotoxicity of OP exposure associated with muscle weakness and tremors, it is reasonable 

to expect OPs will affect functional outcomes, such as postural balance (Sack et al., 1993; 

Yokoyama, 2007).

The occupational groups most commonly exposed to pesticides are agricultural workers and 

pest control applicators. Although the short-and long-term effects of an acute, high-dose 

exposure to pesticides (e.g., poisonings) are known for most subclasses, the impact of 

chronic exposure to lower doses leading to chronic neurotoxicity is a topic of debate. The 

literature includes inconsistent findings (Ismail, Bodner, & Rohlman, 2012; Kamel & 

Hoppin, 2004; Meyer-Baron, Knapp, Schäper, & van Thriel, 2015). Understanding the 

extent to which lower-level exposures influence health is of particular importance for 

adolescent workers, because these workers are still developing. One mechanism for 
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increased acute injury risk is via decrements in postural stability, which may predispose 

these workers to STFs (Figure 4). In studies with agricultural populations, a sizeable 

proportion of acute occupational injuries involves a fall from elevation, STF, or loss of 

balance (McCurdy, Xiao, & Kwan, 2012; Rautiainen, Lange, Hodne, Schneiders, & 

Donham, 2004; Xiang et al., 2000).

Despite the publication over 50 years ago of a landmark study of apple farmers and chronic 

effects of pesticide exposure, including disturbances of equilibrium (Davignon, St.-Pierre, 

Charest, & Tourangeau, 1965), only a few studies of pesticide exposure include an 

assessment of postural stability, either by direct measure or via self-report. Kamel et al. 

(2003) measured postural stability in a group of farmworkers from Florida. For the condition 

that challenges vestibular and proprioception the greatest, EC standing on foam, observed 

patterns suggested that those with more years of experience doing farm work had larger 

sway length, implying compromised postural balance. Associations with conditions that 

allowed participants to rely on visual afferents were not significant or as great in magnitude. 

Using a comparable sway protocol, Sack et al. (1993) reported similar findings with 

pesticide applicators. These males had an average sway length that was larger than controls 

under the most challenging test condition. Given the difference in sway length, as opposed to 

area, this finding suggests that a proprioceptive impairment may be more prominent than a 

disturbance in vestibular function (Yasuda, Nakagawa, Inoue, Iwamoto, & Inokuchi, 1999). 

A deficit in proprioception as well as vestibular function is biologically plausible given that 

pesticides, such as OPs, target structures in the cerebellum, the area of the brain that 

coordinates information needed to control balance (Fonnum & Lock, 2000; Watson & Black, 

2008).

Additional studies yielded increased sway parameters among pesticide applicators compared 

with control groups (Kimura et al., 2005; Steen-land et al., 2000). This association between 

pesticide exposure and increased sway parameters was not found among pesticide 

applicators in the Agricultural Health Study, but associations were reported for abnormal toe 

proprioception (Starks et al., 2012).

Pesticide exposure associated with acute injury.—If pesticide-related neurotoxicity 

manifests as diminished cognitive function or motor control, the risk of acute occupational 

injury could increase due to decreased reaction times, stability, and cognitive-processing 

speeds, among other causes (Figure 4). Authors of only a few studies examined this issue in 

agricultural populations. Exposure definitions and other methods vary widely, complicating 

comparison. With respect to self-reported symptoms of neurotoxicity, Atrubin, Wilkins, 

Crawford, and Bean (2005) conducted a case-control study of nonfatal, acute injury (past 12 

months) with principal operators (n = 1,510) involved in cash-grain operations in Ohio. 

Significant associations were detected for difficulty moving fingers or grasping things, 

feeling lightheaded or dizzy, trouble remembering things, difficulty driving after work, 

feeling irritable, sleeping more, and headaches at least once per week. The strongest 

association was for being bothered by lack of coordination or loss of balance (adjusted odd 

ratio [OR] = 3.12; 95% confidence interval [CI] = [1.68, 5.81]). Park et al. (2001) reported a 

slightly elevated, but not significant, unadjusted association (ORunadj = 1.33; 90% CI = 
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[0.50, 3.56]) between seven or more neurotoxicity symptoms and injury (prior year) for 

farmers in Iowa.

In a similar analysis, Whitworth, Shipp, Cooper, and del Junco (2010) conducted a cross-

sectional analysis of 96 adolescent farmworkers along the Texas-Mexico border. They 

examined self-reported symptoms of neurotoxicity and acute injury (past 9 months). The 

associations for those reporting two to four symptoms (ORunadj = 3.28; 95% CI = [0.91, 

11.89]) and five or more symptoms (ORunadj = 8.75; 95% CI = [1.89, 40.54]) strengthened 

with increasing symptom category, compared with those reporting no symptoms or only one 

symptom.

A handful of additional studies on acute occupational injuries in adolescent and adult 

farmworkers included an assessment of pesticide exposure rather than symptoms of 

neurotoxicity. Studies of farmers in Iowa, Alabama, and Colorado showed that associations 

between exposure to pesticides and injury were indicative of a one-and-a-half- to twofold 

increase in risk (Rautiainen et al., 2004; Stallones, Keefe, & Xiang, 1997; Xiang, Stallones, 

Chiu, & Epperson, 1998; Zhou & Roseman, 1994). The exception is a study of farmers in 

China, where the adjusted OR for farmers applying pesticide four or more times per week 

(compared with those applying less) was 16.75 (95% CI = [4.70, 59.70]; Xiang et al., 2000).

Waggoner et al. (2013) conducted an analysis of fatal injury among 51,035 male farmers 

from North Carolina and Iowa in the Agricultural Health Study. From 1993 to 2008, 338 

fatal injuries were observed. After adjusting for age and state, associated factors included 

60+ days of pesticide application per year (adjusted hazard ratio = 1.87; 95% CI = [1.10, 

3.18]). Ever use of five herbicides, including 2,4,5,-T, paraquat, alachlor, metribuzin, or 

butylate; the fumigant carbon tetrachloride/carbon disulfide; and the fungicide Ziram was 

associated with fatal injury. Having at least one high-pesticide-exposure event was not 

significant, indicating that findings cannot be attributed to a single pesticide. Associations 

with herbicides were unexpected, given the research with stronger associations between 

insecticides and neurotoxicity. The authors concluded that the results were not due to 

confounding by high-risk farm activities (driving a combine) but urged caution while 

interpreting findings due to uncertainty on the timing of the exposure.

A couple of studies pertain to adolescent farmworkers and self-reported exposure to 

pesticides or chemicals and acute injury within the prior 12 months. Among youth in China, 

Shen et al. (2013) reported an adjusted OR of 1.18 (95% CI = [1.03, 1.36]) for exposure to 

pesticides, and McCurdy and Kwan (2012) reported an adjusted OR of 1.86 (95% CI = 

[1.15, 3.03]) for youth in California who were mixing chemicals. A study from Texas 

yielded an unadjusted estimate (ORunadj = 1.83; 95% CI = [1.05, 3.19]) within this range, 

but the variable was not retained in a final model (Shipp, Cooper, del Junco, Cooper, & 

Whitworth, 2013). For adolescents, we found no studies based on exposure to specific 

pesticides or studies of fatal injury.

Exposure to VOCs and metals: Mechanisms of neurotoxicity and impact on 
functional outcome and injury.—This section includes a brief discussion of 

occupational exposure to VOCs and metals affecting the neuromuscular system and 
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predisposing workers to STFs. Workers at risk of exposure to VOCs include pilots and 

others working in transportation, welders, and, painters. Heavy metal exposure is a concern 

specifically among battery factory workers, smelter workers, and metal miners as well as 

painters, welders, and construction workers.

Exposure to VOCs.—Occupational VOC exposure has been correlated with STFs and 

neurological diseases, with exposure variability being an important predictor. Both increases 

and decreases in exposure were correlated with increases in STFs, with a stronger 

correlation for increases in exposure (Hunting et al., 1991). Hunting et al. (1991) suggested 

two possible ways for variability in exposure to be impactful: (a) a mechanism of solvent 

toxicity tolerance and (b) a behavioral tolerance in which the workers would find ways to 

work with the impairment effects of the VOCs. Studies have utilized hand tremor and 

postural sway techniques to study the health effects of VOCs (Iwata, Mori, Dakeishi, 

Onozaki, & Murata, 2005; Kilburn, Warshaw, & Hanscom, 1994; Kuo et al., 1996; Park, 

Lee, Lee, & Lim, 2009; Smith et al., 1997; Yokoyama et al., 1997). These methods are both 

more objective and more sensitive than the batteries of neurobehavioral assessments (Laine, 

Seppäläinen, Savolainen, & Riihimäki, 1996; Ruijten, Verberk, & Sallé, 1991).

A postural sway and hand tremor study showed workers with detectable trichloroethylene in 

their urine had greater postural instability and dominant-hand tremor than those not exposed 

(Murata, Inoue, Akutsu, & Iwata, 2010). Araki, Sato, Yokoyama, and Murata (2000) showed 

a correlation between solvent exposure and vestibular, cerebellar, and spinocerebellar lesions 

among Pb workers. These lesions could be a mechanism for causing STFs and other injuries 

in VOC-exposed workers.

Exposure to metals.—Exposure to heavy metals, such as Pb, detrimentally affects 

multiple organs, such as CNS, PNS, and skeletal, renal, and visual systems. As Pb competes 

with calcium, it affects neurotransmitter release necessary for muscle contraction (Atchison, 

1988; Goldstein, 1990), thereby disturbing motor functions. Mansouri and Cauli (2009) and 

Weisskopf et al. (2010) provide evidence of Pb exposure–associated motor dysfunctions 

(postural imbalance and gait impairment) comparable to those found in Parkinson’s disease. 

Pb is associated with disrupting the dopaminergic function, which is one of the mechanisms 

of etiology for Parkinson’s disease (Jenner, 2003; Jenner & Olanow, 2006). Van 

Wijngaarden et al. (2009) reports that lifelong burden of Pb exposure measured in the bone 

is associated with memory impairment in older adults, a marker of potential development of 

Alzheimer’s disease. Racette et al. (2012) reports increased risk of Parkinsonism associated 

with welding exposure, which contains another heavy metal, Mn.

In addition, studies report chronic exposure to Pb is associated with impact on bone health, 

potentially predisposing workers to early development of osteoporosis. For example, Pb-

associated inhibition of parathyroid hormone–related peptide causes premature maturation 

of chondrocytes (Zuscik et al., 2002). This premature maturation may result in a higher bone 

density and a transiently lower accumulation of bone mass during early life, predisposing to 

development of osteoporosis (Campbell & Auinger, 2007; Cooper et al., 2002; Javaid & 

Cooper, 2002; Schlüssel, Vas, & Kac, 2010). A growing literature exists regarding the body 

burden of heavy metals in adults and bone health, including osteoporosis, bone mineral 
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density, and bone fractures, specifically of the hip. Findings illustrate that cadmium (Cd) and 

Pb exposures, including those from environmental and food sources, may be contributing to 

fractures, especially in older adults and those who smoke (Dahl et al., 2014; Engström et al., 

2012; Staessen et al., 1999). Similar associations have been found between increased Pb 

exposure and impairments in postural sway or balance (Dick et al., 1999; Iwata, Yano, 

Karita, Dakeishi, & Murata, 2005; Pawlas, Broberg, Skerfving, & Pawlas, 2014).

With respect to the potential for an increased risk for STFs, limited data are available 

regarding assessments of postural sway or balance, particularly among workers and beyond 

examining Pb exposures. For the general population, among adults 40 years of age and older 

who participated in the National Health and Nutrition Examination Survey, those with 

higher blood Cd, as well as Pb, concentrations had poorer performance on balance tests. 

Among those with concentrations in the fifth compared with the first quintile, the adjusted 

ORs were 1.27 (95% CI = [1.10, 1.60]) and 1.42 (95% CI = [1.07, 1.89]) for Cd and Pb, 

respectively (Campbell & Auinger, 2007).

Increased Mn levels are associated with impaired cognitive and psychomotor development 

(Claus Henn et al., 2010; Takser, Mergler, Hellier, Sahuquillo, & Huel, 2003). A systematic 

review showed Mn exposure resulted in decreased cognitive function and decreased motor 

neuron conduction velocities (Mergler & Baldwin, 1997). Mergler et al. (1994) suggested 

that Mn exposure impairs the ability to perform bilaterally transposed (mirror image) motor 

movements. Mn exposure’s effect on balance has been studied in occupational and non-

occupational populations (Rugless et al., 2014; Standridge et al., 2008; Takser et al., 2003). 

Welders may be the largest occupational group exposed to Mn. Studies yield evidence for a 

relationship, but findings are inconclusive (Bowler et al., 2007; Ellingsen et al., 2008; Kim et 

al., 2007). Data from a research study of a community near to a ferromanganese refinery 

provide further evidence of a relationship. Among children, mean Mn levels in blood and 

hair were both significantly associated with poorer postural balance (Rugless et al., 2014). A 

similar pattern was also observed among adults (Standridge et al., 2008). With respect to 

studies on workers exposed to Hg, findings are less supportive of an association (Frumkin et 

al., 2001; Iwata et al., 2007).

Minimal studies of the impact of metals exposure on injury risk are available. Kincl et al. 

(2006) found evidence that early-childhood Pb exposure increased the risk of acute 

unintentional injury later in adolescence. The average blood lead level (BLL) among those 

reporting an injury (14.23 μg/dL) was higher compared with those reporting no injury (12.2 

μg/dL) during the follow-up period. A considerable proportion (46%) of reported injuries 

was due to falls. The average BLL for a subgroup of those experiencing falls was 15.5 

μg/dL. This cohort study is particularly of interest because it yielded evidence that early Pb 

exposure influenced postural stability later in life, even at low to moderate BLL 

(Bhattacharya, Shukla, Dietrich, & Bornschein, 2006).
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DISCUSSION AND CONCLUSION

Integration of the Effects of Physical and Chemical Exposures on Injury Risk

This review highlights the importance of considering the different types of risk factors that 

are present in the workplace to improve injury prevention. In this context, physical 

exposures often are identified as points for intervention without also acknowledging the 

contribution of other types of risk factors, namely, chemical exposures, alone or in 

combination with other chemical or physical exposures. The lack of information on 

combinations of chemical and physical exposures is a limitation to the current literature; 

however, we hope this literature review and Tom Waters’s work inspire researchers to 

address combined chemical and physical exposures.

There are many occupations in which workers encounter both chemical and physical 

exposures. In some of these professions, physical exertion exacerbates the effects of these 

exposures. As an example, agricultural workers are exposed often simultaneously to high-

heat environments, high physical exertion, and neurotoxins, such as pesticides. Under these 

circumstances, these workers’ functional outcome, as characterized by postural balance and 

gait function, could be seriously affected by all exposures, thereby increasing their 

susceptibility to STFs and other injuries. Consider another example of jet fuel mechanics 

exposed to VOCs, including solvent-based jet fuels, during daily maintenance of aircraft. Jet 

fuel mechanics’ tasks requires wearing whole-body protective clothing with respirators 

while carrying out physically demanding tasks, such as crawling inside and out of the fuel 

tank and walking on the wings under slippery conditions. In the jet fuel mechanics work 

scenario, multiple exposures consist of heat, physical exertion, and jet fuel, all of which 

individually have been associated with increased postural imbalance (Distefano et al., 2013; 

Hafez & Ayoub, 1991; Seliga et al., 1991; Smith et al., 1997). Therefore, the risk of STFs is 

likely to be significantly enhanced due to these coinciding physical and chemical exposures.

Another occupation that is chronically exposed to multiple physical and chemical risk 

factors is firefighters. They are exposed to toxic chemicals, heat, and physical exertion. 

Under high temperature and heavy exertion, exposure penetration of toxic chemicals into the 

skin and deep tissue is significantly increased, resulting in higher toxicity. Other occupations 

that encounter physical and chemical exposures simultaneously are welders, painters, and 

construction workers. Such multiple exposure agents experienced by the worker will 

seriously jeopardize his or her functional abilities and safety. However, more comprehensive 

and prospective data will have to be obtained to quantify the relative contributions of each of 

the exposure types (i.e., heat, physical exertion, and chemicals) in predisposing workers to 

injury. Having such information will permit development of data-driven predictive models 

that can take into account the roles of various risk factors in modifying workers’ functional 

outcomes and the resulting impact on the risk of injury.

Physical Exposures: Future Research Needs

Due to individual susceptibility to acquired thermal tolerance and molecular adaptations 

varying from person to person, there is a need for biomarkers to identify susceptible 

populations (e.g., adolescents, older individuals, first responders). In this manner, 
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individualized interventions could be developed. In particular, first responders are at 

increased risk of exposure to cumulative hyperthermia, which detrimentally affects thermal 

adaptation at the molecular level and potentially compromises their neuromuscular 

performance because of fatigue (Sobeih, Davis, Succop, Jetter, & Bhattacharya, 2006; 

Figure 5). Therefore, early biomarkers and/or predictive model(s) for identifying 

hyperthermia are important areas of future research to minimize heat-associated injuries and 

fatality among workers of all ages. Literature provides two models for predicting 

hyperthermia (core temperature >100.4°F): (a) one based on physiology of heat stress 

(Yokota, Berglund, Santee, Butler, & Hoyt, 2005; Yokota, Berglund, & Bathalon, 2012; 

Yokota, Berglund, Santee, et al., 2012) and (b) data-driven decision trees (Mani, Rao, James, 

& Bhattacharya, 2015). Use of such predictive modeling has a critical role in designing and 

developing innovative interventions to minimize heat stress in the working population of all 

ages in hot environments (Mani et al., 2013, 2015), such as firefighters and agricultural and 

construction workers.

There are limitations when studying repetitive physical loading. Findings of the BSA 

method indicate that it could form the basis of an early-detection tool that identifies 

individuals with an increased risk of developing OA later in life. However, larger prospective 

cohort studies are needed to confirm the findings in the existing literature with adolescents 

doing farm work (Bhattacharya, Watts, et al., 2007).

Chemical Exposures: Future Research for VOCs, Pesticides, and Metals

There are large gaps in the literature regarding chemical exposures. Many of these gaps 

result from difficulties with exposure assessment that can lead to misclassification and 

information bias. Specific challenges include accurately estimating the type, source, dose, 

and duration of exposure (Kamel & Hoppin, 2004), which is especially problematic for both 

short- and long-term exposures and repeated exposures and chemical mixtures. Chemical 

half-lives further complicate assessment. Chemicals often have short half-lives in tissues, 

which requires their measurement very close to the time of exposure. Additional concerns 

include correctly assessing the purity and composition of chemicals, isolating different 

routes of exposure, and understanding variability in work practices and area ventilation, 

which all influence the dose and duration of exposure. Further, workers rarely are exposed to 

a single potential toxicant, with the bulk of solvents being mixtures. The impact of many of 

these issues would be ameliorated by better, noninvasive measures of exposure or new 

biomarkers, similar to the needs pointed out for heat exposure. Improved exposure 

assessment would dramatically further our knowledge of the chronic effects of low dose and 

cumulative toxicant exposures, particularly for VOCs and pesticides (Chin-Chan, Navarro-

Yepes, & Quintanilla-Vega, 2015).

Prospective studies are particularly needed for establishing the temporal sequence between 

the exposure and the onset of neurobehavioral or neuromuscular outcomes. There is a need 

for studies of long-term, low-dose exposures (Wu, Bhanegaoankar, & Flowers, 2006) that 

could also be examined with such large prospective studies. Since many chemicals used at 

work are also prevalent in the nonwork environment, large population-based prospective 
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studies also would enable differentiating chemical exposures that are occupational versus 

non-occupational and their joint contribution to health effects (Liu & Jia, 2015).

Authors of future work should carefully address potential sources of bias, including 

selection bias and potential confounding, especially for the chemical exposures. Many 

current studies have the limitation of bias due to selection of the control group. Depending 

on the choice of control groups (working populations, similarity of tasks, where the group 

lives), association between exposures and outcomes may be masked or attenuated. Poor 

adjustment for or poor measurement of potential confounders needs to be considered in the 

design and analysis phases of future studies (e.g., alcohol use; Baker et al., 1988; Liu & Jia, 

2015; Wu et al., 2006). For example, educational attainment, gender, genetic susceptibility, 

and age should be considered as confounding characteristics in studies on chemical 

exposures (Meyer-Baron et al., 2015). Age is of particular interest because duration and 

accumulation of exposure may correlate to age or years of work (Meyer-Baron et al., 2015). 

In addition, aging is correlated with neuromotor dysfunction and neurodegeneration 

(Lucchini et al., 2014). Although the neurotoxicity and pathways of chemical exposures may 

be different in children and adolescents than in adults, the exposures lead to the same long-

term impairments. Gender and adolescence may also be important confounders, but there is 

a lack of data at this time (Meyer-Baron et al., 2015). Genetic susceptibility studies are 

becoming more common, but more work is needed for some classes of pesticides, metals, 

and VOCs.

The mechanisms of neurotoxicity are similar between some classes of pesticides, metals, 

and VOCs, as seen in Figure 4. Exposure to VOCs, metals, and pesticides may cause neuron 

demyelination or inhibit neurotransmitters (also caused by heat stress), resulting in 

neuropathy. Other pesticides inhibit gated ion channels in neurons. Inhibition of both gated 

ion channels and neurotransmitters can lead to repetitive nerve firing. Neuropathy may 

progress to musculoskeletal disorders and neurodegenerative diseases. VOCs and metals can 

cause demyelination in the temporal lobe or structural changes in the prefrontal cortex. 

These changes to the brain may result in cognitive or executive function impairment and 

may contribute to neurodegeneration. Consequently, repetitive nerve firing, neuropathy, 

structural changes in the brain, and neurodegeneration may all lead to injuries in the 

workplace. Of great concern, toxicants produce neurobehavioral impairment and structural 

changes in the brain before this toxicity can be detected clinically. Therefore, it is crucial to 

develop methods to detect preclinical levels of toxicity early. Methods like postural sway 

and exposure assessments are important in early detection and prevention of further toxicity.

A significant amount of research is needed to elucidate the precise mechanism by which 

VOC exposure leads to neurotoxic health effects. Research is needed to understand how 

VOC exposures lead to STFs and other injuries. For metals other than Mn, more work is 

needed on the association of metal toxicity and injury. There is also a great need for work on 

the effects of pesticides on female and adolescent workers. Women and adolescents may be 

more susceptible to pesticide exposure, but the data are not sufficient to support this claim. 

Research distinguishing pathways of chemical exposures and neuromuscular outcomes 

throughout the life course is needed to protect the workforce prior to the development of 

workplace musculoskeletal disorders. Although there is literature on visuospatial, olfactory, 
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and motor control impairments due to metal exposures, there is almost no research linking 

these impairments to injury. There is a need for studies on mixtures of chemicals, not just 

mixtures of metals or pesticides but the combination of all potential sources of exposure in 

the workplace (Chin-Chan et al., 2015). For example, farmworkers may be co-exposed to 

metals and pesticides (e.g., Mn in fungicides; Quandt et al., 2010).

In the long term, there is a need for the development of comprehensive risk assessment 

modeling that is based on population-based studies and includes parameters for both 

physical and chemical exposures. Such data-driven predictive models could be based on 

regression methods and classification trees. These tools can then be used to investigate the 

relative contributions of individual exposure types (physical and/or chemical) in modifying 

functional outcomes that lead to injury.

In summary, there are certain environments where workers have to carry out their tasks 

during both physical and chemical exposures. This combination affects their functional 

outcomes, thereby increasing their injury risk. Through this review, we presented the need 

for a comprehensive and multidisciplinary approach to occupational injury research that 

goes beyond the assessment of traditional ergonomic physical exposures by also considering 

the role of chemical exposures.
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KEY POINTS

• Both physical and chemical exposures, alone and in combination, may impair 

functional outcomes, thereby increasing the risk of occupational injury, such 

as those resulting from slips, trips, and falls.

• To understand combined exposures and health effects, there are multiple 

research needs, such as better understanding mechanisms and identifying 

highly susceptible groups,

• To prevent further exposures or toxicity and associated negative health effects, 

it is important that methods (e.g., postural sway and comprehensive exposure 

assessments) are used for early detection.
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Figure 1. 
Neurotoxic and physical exposures throughout the life course and their contribution to 

traumatic injury and degenerative disorders.
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Figure 2. 
Effect of full-face respirator under baseline and workload on postural balance (adapted from 

Seliga et al., 1991).
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Figure 3. 
Sway area plot of baseline (before firefighting) and after Scenario 3 (at the end of 

firefighting) (adapted from James, Mani, Kincer, & Bhattacharya, 2013).
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Figure 4. 
Comparison of the mechanisms of neurotoxicity for pesticides, volatile organic compounds, 

metals, and heat stress.
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Figure 5. 
Effect of long working hours on postural balance of firefighters and a solution. The figure 

shows association between long work hours and postural imbalance as fatigue builds up 

(adapted from Sobeih, Davis, Succop, Jetter, & Bhattacharya, 2006).
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